Design of the Nonlinear System Predictor Driven by the Bayesian-Gaussian Neural Network of Sliding Window Data
نویسندگان
چکیده
The model identification of the nonlinear system has been concerned by the industrial community all along. The relationship of the nonlinear dynamic system is contained in the data accumulated in the scene. To better utilize the data about the industrial objects, in this article, we put forward the nonlinear system predictor driven by the Bayesian-Gaussian neural network (NN) model, use the trained threshold matrix and sliding window data to realize the online output prediction for the nonlinear dynamic system. The simulation experiment indicates that the Bayesian-Gaussian NN based on the sliding window data can fulfill the demands of the online identification and prediction of the adaptive nonlinear system.
منابع مشابه
Governor design for hydropower plants by intelligent sliding mode variable structure control
This work proposes a neural-fuzzy sliding mode control scheme for a hydro-turbine speed governor system. Considering the assumption of elastic water hammer, a nonlinear mode of the hydro-turbine governor system is established. By linearizing this mode, a sliding mode controller is designed. The linearized mode is subject to uncertainties. The uncertainties are generated in the process of linear...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملHybrid Concepts of the Control and Anti-Control of Flexible Joint Manipulator
This paper presents a Gaussian radial basis function neural network based on sliding mode control for trajectory tracking and vibration control of a flexible joint manipulator. To study the effectiveness of the controllers, designed controller is developed for tip angular position control of a flexible joint manipulator. The adaptation laws of designed controller are obtained based on sliding m...
متن کاملRobust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer and Information Science
دوره 2 شماره
صفحات -
تاریخ انتشار 2009